Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Med (Lausanne) ; 9: 949281, 2022.
Article in English | MEDLINE | ID: covidwho-2022772

ABSTRACT

Background: SARS-CoV-2 infection can impair diaphragm function at the acute phase but the frequency of diaphragm dysfunction after recovery from COVID-19 remains unknown. Materials and methods: This study was carried out on patients reporting persistent respiratory symptoms 3-4 months after severe COVID-19 pneumonia. The included patients were selected from a medical consultation designed to screen for recovery after acute infection. Respiratory function was assessed by a pulmonary function test, and diaphragm function was studied by ultrasonography. Results: In total, 132 patients (85M, 47W) were recruited from the medical consultation. During the acute phase of the infection, the severity of the clinical status led to ICU admission for 58 patients (44%). Diaphragm dysfunction (DD) was detected by ultrasonography in 13 patients, two of whom suffered from hemidiaphragm paralysis. Patients with DD had more frequently muscle pain complaints and had a higher frequency of prior cardiothoracic or upper abdominal surgery than patients with normal diaphragm function. Pulmonary function testing revealed a significant decrease in lung volumes and DLCO and the dyspnea scores (mMRC and Borg10 scores) were significantly increased in patients with DD. Improvement in respiratory function was recorded in seven out of nine patients assessed 6 months after the first ultrasound examination. Conclusion: Assessment of diaphragm function by ultrasonography after severe COVID-19 pneumonia revealed signs of dysfunction in 10% of our population. In some cases, ultrasound examination probably discovered an un-recognized pre-existing DD. COVID-19 nonetheless contributed to impairment of diaphragm function. Prolonged respiratory physiotherapy led to improvement in respiratory function in most patients. Clinical trial registration: [www.cnil.fr], identifier [#PADS20-207].

2.
Cells ; 11(6)2022 03 18.
Article in English | MEDLINE | ID: covidwho-1760410

ABSTRACT

BACKGROUND: To develop a deep-learning (DL) pipeline that allowed an automated segmentation of epicardial adipose tissue (EAT) from low-dose computed tomography (LDCT) and investigate the link between EAT and COVID-19 clinical outcomes. METHODS: This monocentric retrospective study included 353 patients: 95 for training, 20 for testing, and 238 for prognosis evaluation. EAT segmentation was obtained after thresholding on a manually segmented pericardial volume. The model was evaluated with Dice coefficient (DSC), inter-and intraobserver reproducibility, and clinical measures. Uni-and multi-variate analyzes were conducted to assess the prognosis value of the EAT volume, EAT extent, and lung lesion extent on clinical outcomes, including hospitalization, oxygen therapy, intensive care unit admission and death. RESULTS: The mean DSC for EAT volumes was 0.85 ± 0.05. For EAT volume, the mean absolute error was 11.7 ± 8.1 cm3 with a non-significant bias of -4.0 ± 13.9 cm3 and a correlation of 0.963 with the manual measures (p < 0.01). The multivariate model providing the higher AUC to predict adverse outcome include both EAT extent and lung lesion extent (AUC = 0.805). CONCLUSIONS: A DL algorithm was developed and evaluated to obtain reproducible and precise EAT segmentation on LDCT. EAT extent in association with lung lesion extent was associated with adverse clinical outcomes with an AUC = 0.805.


Subject(s)
COVID-19 , Deep Learning , Adipose Tissue/diagnostic imaging , COVID-19/diagnostic imaging , Humans , Reproducibility of Results , Retrospective Studies , Tomography, X-Ray Computed/methods
3.
Research in Diagnostic and Interventional Imaging ; 1:100003-100003, 2022.
Article in English | EuropePMC | ID: covidwho-1755536

ABSTRACT

Objectives 1) To develop a deep learning (DL) pipeline allowing quantification of COVID-19 pulmonary lesions on low-dose computed tomography (LDCT). 2) To assess the prognostic value of DL-driven lesion quantification. Methods This monocentric retrospective study included training and test datasets taken from 144 and 30 patients, respectively. The reference was the manual segmentation of 3 labels: normal lung, ground-glass opacity(GGO) and consolidation(Cons). Model performance was evaluated with technical metrics, disease volume and extent. Intra- and interobserver agreement were recorded. The prognostic value of DL-driven disease extent was assessed in 1621 distinct patients using C-statistics. The end point was a combined outcome defined as death, hospitalization>10 days, intensive care unit hospitalization or oxygen therapy. Results The Dice coefficients for lesion (GGO+Cons) segmentations were 0.75±0.08, exceeding the values for human interobserver (0.70±0.08;0.70±0.10) and intraobserver measures (0.72±0.09). DL-driven lesion quantification had a stronger correlation with the reference than inter- or intraobserver measures. After stepwise selection and adjustment for clinical characteristics, quantification significantly increased the prognostic accuracy of the model (0.82 vs. 0.90;p<0.0001). Conclusions A DL-driven model can provide reproducible and accurate segmentation of COVID-19 lesions on LDCT. Automatic lesion quantification has independent prognostic value for the identification of high-risk patients.

4.
J Clin Med ; 10(23)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1542625

ABSTRACT

OBJECTIVES: To describe clinical characteristics and management of intensive care units (ICU) patients with laboratory-confirmed COVID-19 and to determine 90-day mortality after ICU admission and associated risk factors. METHODS: This observational retrospective study was conducted in six intensive care units (ICUs) in three university hospitals in Marseille, France. Between 10 March and 10 May 2020, all adult patients admitted in ICU with laboratory-confirmed SARS-CoV-2 and respiratory failure were eligible for inclusion. The statistical analysis was focused on the mechanically ventilated patients. The primary outcome was the 90-day mortality after ICU admission. RESULTS: Included in the study were 172 patients with COVID-19 related respiratory failure, 117 of whom (67%) received invasive mechanical ventilation. 90-day mortality of the invasively ventilated patients was 27.4%. Median duration of ventilation and median length of stay in ICU for these patients were 20 (9-33) days and 29 (17-46) days. Mortality increased with the severity of ARDS at ICU admission. After multivariable analysis was carried out, risk factors associated with 90-day mortality were age, elevated Charlson comorbidity index, chronic statins intake and occurrence of an arterial thrombosis. CONCLUSION: In this cohort, age and number of comorbidities were the main predictors of mortality in invasively ventilated patients. The only modifiable factor associated with mortality in multivariate analysis was arterial thrombosis.

5.
Front Endocrinol (Lausanne) ; 12: 726967, 2021.
Article in English | MEDLINE | ID: covidwho-1394754

ABSTRACT

In March 2020, the WHO declared coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a global pandemic. Obesity was soon identified as a risk factor for poor prognosis, with an increased risk of intensive care admissions and mechanical ventilation, but also of adverse cardiovascular events. Obesity is associated with adipose tissue, chronic low-grade inflammation, and immune dysregulation with hypertrophy and hyperplasia of adipocytes and overexpression of pro-inflammatory cytokines. However, to implement appropriate therapeutic strategies, exact mechanisms must be clarified. The role of white visceral adipose tissue, increased in individuals with obesity, seems important, as a viral reservoir for SARS-CoV-2 via angiotensin-converting enzyme 2 (ACE2) receptors. After infection of host cells, the activation of pro-inflammatory cytokines creates a setting conducive to the "cytokine storm" and macrophage activation syndrome associated with progression to acute respiratory distress syndrome. In obesity, systemic viral spread, entry, and prolonged viral shedding in already inflamed adipose tissue may spur immune responses and subsequent amplification of a cytokine cascade, causing worse outcomes. More precisely, visceral adipose tissue, more than subcutaneous fat, could predict intensive care admission; and lower density of epicardial adipose tissue (EAT) could be associated with worse outcome. EAT, an ectopic adipose tissue that surrounds the myocardium, could fuel COVID-19-induced cardiac injury and myocarditis, and extensive pneumopathy, by strong expression of inflammatory mediators that could diffuse paracrinally through the vascular wall. The purpose of this review is to ascertain what mechanisms may be involved in unfavorable prognosis among COVID-19 patients with obesity, especially cardiovascular events, emphasizing the harmful role of excess ectopic adipose tissue, particularly EAT.


Subject(s)
COVID-19/metabolism , Cardiomyopathies/metabolism , Intra-Abdominal Fat/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/immunology , Cardiomyopathies/immunology , Cardiomyopathies/pathology , Heart Diseases/immunology , Heart Diseases/metabolism , Heart Diseases/pathology , Humans , Inflammation , Intra-Abdominal Fat/pathology , Obesity/complications , Obesity/immunology , Obesity/pathology , Pericardium , Prognosis , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism
7.
Insights Imaging ; 11(1): 117, 2020 Nov 17.
Article in English | MEDLINE | ID: covidwho-930571

ABSTRACT

BACKGROUND: Low-dose chest CT (LDCT) showed high sensitivity and ability to quantify lung involvement of COVID-19 pneumopathy. The aim of this study was to describe the prevalence and risk factors for lung involvement in 247 patients with a visual score and assess the prevalence of incidental findings. METHODS: For 12 days in March 2020, 250 patients with RT-PCR positive tests and who underwent LDCT were prospectively included. Clinical and imaging findings were recorded. The extent of lung involvement was quantified using a score ranging from 0 to 40. A logistic regression model was used to explore factors associated with a score ≥ 10. RESULTS: A total of 247 patients were analyzed; 138 (54%) showed lung involvement. The mean score was 4.5 ± 6.5, and the mean score for patients with lung involvement was 8.1 ± 6.8 [1-31]. The mean age was 43 ± 15 years, with 121 males (48%) and 17 asymptomatic patients (7%). Multivariate analysis showed that age > 54 years (odds ratio 4.4[2.0-9.6] p < 0.001) and diabetes (4.7[1.0-22.1] p = 0.049) were risk factors for a score ≥ 10. Multivariate analysis including symptoms showed that only age > 54 years (4.1[1.7-10.0] p = 0.002) was a risk factor for a score ≥ 10. Rhinitis (0.3[0.1-0.7] p = 0.005) and anosmia (0.3[0.1-0.9] p = 0.043) were protective against lung involvement. Incidental imaging findings were found in 19% of patients, with a need for follow-up in 0.6%. CONCLUSION: The prevalence of lung involvement was 54% in a predominantly paucisymptomatic population. Age ≥ 55 years and diabetes were risk factors for significant parenchymal lung involvement. Rhinitis and anosmia were protective against LDCT abnormalities.

8.
PLoS One ; 15(11): e0241407, 2020.
Article in English | MEDLINE | ID: covidwho-902052

ABSTRACT

OBJECTIVES: The purpose is to assess the ability of low-dose CT (LDCT) to determine lung involvement in SARS-CoV-2 pneumonia and to describe a COVID19-LDCT severity score. MATERIALS AND METHODS: Patients with SARS-CoV-2 infection confirmed by RT-PCR were retrospectively analysed. Clinical data, the National Early Warning Score (NEWS) and imaging features were recorded. Lung features included ground-glass opacities (GGO), areas of consolidation and crazy paving patterns. The COVID19-LDCT score was calculated by summing the score of each segment from 0 (no involvement) to 10 (severe impairment). Univariate analysis was performed to explore predictive factor of high COVID19-LDCT score. The nonparametric Mann-Whitney test was used to compare groups and a Spearman correlation used with p<0.05 for significance. RESULTS: Eighty patients with positive RT-PCR were analysed. The mean age was 55 years ± 16, with 42 males (53%). The most frequent symptoms were fever (60/80, 75%) and cough (59/80, 74%), the mean NEWS was 1.7±2.3. All LDCT could be analysed and 23/80 (28%) were normal. The major imaging finding was GGOs in 56 cases (67%). The COVID19-LDCT score (mean value = 19±29) was correlated with NEWS (r = 0.48, p<0.0001). No symptoms were risk factor to have pulmonary involvement. Univariate analysis shown that dyspnea, high respiratory rate, hypertension and diabetes are associated to a COVID19-LDCT score superior to 50. CONCLUSIONS: COVID19-LDCT score did correlate with NEWS. It was significantly different in the clinical low-risk and high-risk groups. Further work is needed to validate the COVID19-LDCT score against patient prognosis.


Subject(s)
Coronavirus Infections/diagnosis , Lung/diagnostic imaging , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/virology , Cough/etiology , Female , Fever/etiology , Humans , Lung/physiopathology , Male , Middle Aged , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Respiratory Rate , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index , Statistics, Nonparametric , Tomography, X-Ray Computed , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL